A Ditetrylyne as a π-Electron Donor: Synthesis and Characterization of $\left[\mathrm{AgAr}{ }^{\prime} \mathrm{GeGeAr}^{\prime}\right]^{+} \mathrm{SbF}_{6}{ }^{-}$and $\left[\mathrm{Ag}_{2} \mathrm{Ar}^{\prime} \mathrm{GeGe}(\mathrm{F}) \mathrm{Ar}^{\prime}\right]^{+} \mathrm{SbF}_{6}{ }^{-}$ $\left(\mathrm{Ar}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{3}-2,6\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Pr}^{i}{ }_{2}\right)_{2}\right)$

Xinping Wang, Yang Peng, Marilyn M. Olmstead, Håkon Hope, and Philip P. Power*
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616

Received June 11, 2010; E-mail: pppower@ucdavis.edu

Abstract

The reaction of a digermyne $\mathrm{Ar}^{\prime} \mathrm{GeGARr}^{\prime}\left(\mathrm{Ar}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{3}{ }^{-}\right.$ $\left.2,6-\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Pr}_{2}^{\mathrm{i}}\right)_{2}\right)$ with AgSbF_{6} at $-40{ }^{\circ} \mathrm{C}$ forms the complex (AgAr'GeGeAr') ${ }^{+} \mathrm{SbF}_{6}{ }^{-}$, which provides the first example of a heavier group 14 element alkyne analogue behaving as a π donor to a transition metal. The cation ($\left.\mathrm{AgAr}^{\prime} \mathrm{GeGeAr}^{\prime}\right)^{+}$is best described as a hybrid of a π-complex and a σ-metallacyclopropene structure.

Several alkyne analogues (REER, $\mathrm{E}=\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}, \mathrm{Pb} ; \mathrm{R}=$ aryl or silyl ligand) of heavier group 14 elements have been isolated and characterized. ${ }^{1}$ Calculations on the Ge and Sn species show that their bonding can be represented by a or $\mathrm{b} .{ }^{2}$ In valence bond terms, there is an approximate $\mathrm{E}-\mathrm{E}$ double bond and a nonbonded,

resonating lone pair at an E. It is also possible to represent the structure as the singlet diradicaloid form $\mathrm{c}^{2}{ }^{2}$ Their Lewis acidic character has been supported by reactions of REER ($\mathrm{E}=\mathrm{Si}, \mathrm{Ge}$, $\mathrm{Sn})$ with $\mathrm{R}^{\prime} \mathrm{NC}:\left(\mathrm{R}^{\prime}=\mathrm{Bu}^{t}\right.$, Mes, $\left.\mathrm{SiMe}_{3}\right)$ that led to the formation of adducts shown by dor e. ${ }^{3}$ In contrast, complexes such as f or g demonstrating Lewis basic properties and species such as h, in which REER acts as a π electron donor resembling the alkyne congener i, have not been described. ${ }^{4}$ We now report that the reaction of $\mathrm{Ar}^{\prime} \mathrm{GeGeAr}^{\prime}\left(\mathbf{1}, \mathrm{Ar}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\left(\mathrm{C}_{6} \mathrm{H}_{3}-2,6-\mathrm{Pr}^{i}{ }_{2}\right)_{2}{ }^{1 \mathrm{~b}}\right.$ with AgSbF_{6} at $-40^{\circ} \mathrm{C}$ (Scheme 1) leads to a metal cation REER adduct $\left(\mathrm{AgAr}^{\prime} \mathrm{GeGeAr}^{\prime}\right)^{+} \mathrm{SbF}_{6}{ }^{-}\left(2 \cdot \mathrm{SbF}_{6}\right)$ with an $\mathrm{SbF}_{6}{ }^{-}$counteranion, the first example of a heavier group 14 element alkyne analogue-transition-metal π-complex. ${ }^{5}$

Reaction of AgSbF_{6} and 1 equiv of $\mathbf{1}$ in chlorobenzene at -40 ${ }^{\circ} \mathrm{C}$ yielded, after workup, green crystals of compound $2 \cdot \mathrm{SbF}_{6}$ in 23% yield (Scheme 1). The UV-vis spectrum of $2 \cdot \mathrm{SbF}_{6}$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ displays an absorption maximum at $\lambda_{\max }=412 \mathrm{~nm}(\varepsilon=640)$, which differs considerably from that of uncomplexed $\mathbf{1}\left(\lambda_{\max }=501 \mathrm{~nm}\right.$ $(\varepsilon=7500), 371 \mathrm{~nm}(34000)) .{ }^{1 \mathrm{~b}}$

Scheme 1. Reactions of 1 with AgSbF_{6} at -40 and $25^{\circ} \mathrm{C}$

The structure of $2 \cdot \mathrm{SbF}_{6}$ consists of well-separated cations and anions. The cation (Figure 1) is characterized by a C_{2} axis through the silver atom and midpoint of the $\mathrm{Ge}-\mathrm{Ge}$ bond. The $\mathrm{C}-\mathrm{Ge}-\mathrm{Ge}-\mathrm{C}$ core of $\mathbf{2}$ has a trans configuration ($\mathrm{Ge}-\mathrm{Ge}-\mathrm{C}=130.4(3)^{\circ}$) featuring a near-planar $\mathrm{Ge}_{2}\{\mathrm{C}(\mathrm{ipso})\}_{2}$ array. The silver bridges the two Ge atoms in a symmetric fashion. The $\mathrm{Ag}-\mathrm{Ge}$ bonds (2.6501(14) \AA) are ca. $0.2 \AA$ longer than the $\mathrm{Ag}-\mathrm{Ge}($ II $)$ bonds in complexes $\mathrm{Ag}\left[\mathrm{Ge}\left(\mathrm{OC}_{6} \mathrm{HPh}_{4}{ }^{-}\right.\right.$ $\left.\left.2,3,5,6)_{3}\left(\mathrm{AgOSO}_{2} \mathrm{CF}_{3}\right)\right] \cdot 4 \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{HB}\left\{3,5\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Pz}\right\}_{3}\right] \mathrm{AgGeCl}\left[(\mathrm{Me})_{2^{-}}\right.$ ATI $]$ and $\left[\mathrm{HB}\left\{3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{Pz}\right\}_{3}\right] \mathrm{AgGe}-\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)\left[(\mathrm{Me})_{2} \mathrm{ATI}\right]\left((\mathrm{Me})_{2^{-}}\right.$ ATI $=\mathrm{N}$-methyl-2-methylamino-troponiminate), consistent with their bridging character. ${ }^{6}$ In addition, silver is coordinated by four C atoms from two flanking rings with $\mathrm{Ag}-\mathrm{C}$ distances of 2.636 (10) and $2.680(10) \AA$ that are considerably longer than $\mathrm{Ag}-$ arene bonds (~ 2.4 \AA) in $\mathrm{Ag}\left(\eta^{2}-\mathrm{PhMe}\right)_{2}\left(\mathrm{Al}\left(\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right)_{4}{ }^{7}\right.$ The $\mathrm{Ge}-\mathrm{Ge}$ distance (2.303(2) \AA) is within the range $\left(2.2060(7)-2.307(1) \AA\right.$) for digermynes ${ }^{1 \mathrm{~b}, 8,9}$ and is slightly longer than the 2.2850 (6) \AA of the $\mathrm{Ge}-\mathrm{Ge}$ bond in uncomplexed $\mathbf{1}$. ${ }^{\text {bb }}$ The closest previously known structure to $\mathbf{2}$ is that of $\mathrm{NaAr}^{\prime} \mathrm{GeGeAr}^{10}$ (cf. very similar effective radii of four coordinate $\mathrm{Ag}^{+}(1.00 \AA)$ and $\left.\mathrm{Na}^{+}(0.99 \AA)\right) .{ }^{11}$ In that compound, however, the $\mathrm{Na} \cdots \mathrm{Ge}$ distances (3.1391 (15) and $3.1596(15) \AA$) are ca. $0.5 \AA$ longer although the closest $\mathrm{Na}-\mathrm{C}$ distances are $0.15-0.2 \AA$ longer than $\mathrm{Ag}-\mathrm{C}$ in 2. These distances suggest a significantly stronger $\mathrm{Ge}-\mathrm{M}$

Figure 1. Thermal ellipsoid (50\%) drawing of 2. H atoms and Pr^{i} groups are not shown. Selected bond distances (\AA) and angles (deg): Ag1-C9 2.636(10), $\mathrm{Ag} 1-\mathrm{Ge} 12.6501(14), \mathrm{Ag} 1-\mathrm{C} 82.680(10)$, Ge1-C1 1.972(9), $\mathrm{Ge} 1-\mathrm{Ge} 1^{\prime}$ 2.303(2), $\mathrm{Ge} 1-\mathrm{Ag} 1-\mathrm{Ge}^{\prime}$ 51.51(5), $\mathrm{C} 1-\mathrm{Ge} 1-\mathrm{Ge}^{\prime}$ 130.4(3), $\mathrm{C} 1-\mathrm{Ge} 1-\mathrm{Ag} 1$ 108.6(3), Ge1-Ge1'-Ag1 64.24(2).
interaction for the silver species especially in view of the fact that, in NaAr'GeGeAr', the "Ar'GeGeAr"" unit formally carries the negative charge. ${ }^{10}$

To further understand $\mathbf{2}$, we performed DFT calculations ${ }^{12}$ for the model complex cation $\mathrm{Ag}(\mathrm{MeGeGeMe})^{+}$(3). This was found to have an energy minimum whose geometrical parameters compare well with those found in the X-ray structure of $\mathbf{2}$. The calculated HOMO-LUMO gap ($71.0 \mathrm{kcal} / \mathrm{mol}$) for $\mathbf{3}$ is close to the energy difference of $69.4 \mathrm{kcal} / \mathrm{mol}$ suggested by the experimental UV/vis absorption at 412 nm . Natural bond orbital (NBO) calculations

j

k

1
reveal that 0.43 electrons are donated from the digermyne MeGeGeMe to Ag^{+}. According to the calculated second-order perturbation interaction energies, the strongest orbital interaction ($54.0 \mathrm{kcal} / \mathrm{mol}$) in $\mathbf{3}$ (and thus in 2) is between the π orbital (HOMO) of the Ge-Ge bond and the empty 5 s or 5 p orbitals of the Ag^{+}cation, shown above as j and k . The back-donation (l) from the $4 \mathrm{~d}_{x z}$ orbital of Ag^{+}into the empty π^{*} orbital (LUMO+1) of $\mathrm{Ge}-\mathrm{Ge}(\mathrm{l})$ is relatively weak ($5.5 \mathrm{kcal} / \mathrm{mol}$). Complex $\mathbf{2}$ is best described as a hybrid of a π-complex m and a σ-metallacyclopropene structure n shown below.

The green color of solutions of $2 \cdot \mathrm{SbF}_{6}$ becomes brown when warmed above $\mathrm{ca} .0^{\circ} \mathrm{C}$. Brown crystals of compound $\left[\mathrm{Ag}_{2} \mathrm{Ar}^{\prime} \mathrm{GeGe}-\right.$ (F) $\mathrm{Ar}^{\prime}{ }^{\prime} \mathrm{SbF}_{6}\left(4 \cdot \mathrm{SbF}_{6}\right)$ in 30% yield were obtained upon cooling (Scheme 1). The reaction of $\mathbf{1}$ with AgSbF_{6} at room temperature also gave $\mathbf{4} \cdot \mathrm{SbF}_{6}$ in a similar yield. The mechanism of formation of $\mathbf{4}$ is unclear, but an abstraction of F from $\mathrm{SbF}_{6}{ }^{-}$to form what may be a stronger $\mathrm{Ge}-\mathrm{F}$ bond (bond energy: $\mathrm{Ge}-\mathrm{F} 473, \mathrm{Sb}-\mathrm{F} 405 \mathrm{~kJ} / \mathrm{mol}$) is a possibility. ${ }^{13}$ In addition, the fluorophilicity of the three-coordinate Ge atoms in $\mathbf{2}$ is probably quite high. The unique structure of $\mathbf{4}$ (Figure 2) features a near-planar AgGeAgGe core. The atoms Ge1, Ge2, and

Figure 2. Thermal ellipsoid (50\%) drawing of 4 (only one of the disordered core arrangements is illustrated). H atoms and Pr^{i} groups are not shown. Selected bond distances (\AA) and angles (deg): $\mathrm{Ag} 1-\mathrm{Ge} 22.5710(11) \AA, \mathrm{Ag} 1-\mathrm{Ge} 1$ 2.7650(12), $\mathrm{Ag}^{\prime}-\mathrm{Ge} 2$ 2.4908(11), $\mathrm{Ag} 1^{\prime}-\mathrm{Ge} 12.7182(11), \mathrm{Ge} 1-\mathrm{Ge} 2$ 2.4861(16), Ge2-F1 1.795(5), Ag1-C11 2.814(4), Ag1-C12 2.562(3), Ag1-C13 2.820(3), Ag1-C18 2.642(3), Ag1-Ge2-Ge1 66.274(1), Ag1-Ge1-Ge2 58.3(3), $\mathrm{Ge} 1-\mathrm{Ag} 1-\mathrm{Ge} 2$ 55.4(4), $\mathrm{C} 1-\mathrm{Ge} 2-\mathrm{Ge} 1$ 124.8(1), $\mathrm{F} 1-\mathrm{Ge} 2-\mathrm{Ge} 1$ 130.8(1), $\mathrm{F} 1-\mathrm{Ge} 2-\mathrm{Ag} 1$ 102.6(1), $\mathrm{Cl}^{\prime}-\mathrm{Ge} 1-\mathrm{Ge} 2$ 108.5(1).

F1 are disordered with respect to a crystallographic inversion center, and each atom was refined at half-occupancy at the two disordered sites (see Supporting Information). The $\mathrm{Ge}-\mathrm{Ag}$ distances (avg. $2.5310(11), 2.7415(12) \AA)$ are unequal with the shorter bond distance to the fluorinated Ge . The $\mathrm{Ge}-\mathrm{F}$ distance $(1.795(5) \AA$) is close to that in compounds (e.g., $1.805(17) \AA$ in $\left[\left\{\mathrm{HC}-(\mathrm{CMeNAr})_{2}\right\} \mathrm{GeF}\right](\mathrm{Ar}=$ $\left.2,6-{ }^{-} \mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$). ${ }^{14}$ The $\mathrm{Ge}-\mathrm{Ge}$ distance $(2.4861(12) \AA$) may be compared with the $2.44 \AA$ of a single $\mathrm{Ge}-\mathrm{Ge}$ bond. ${ }^{15} \mathbf{4}$ can be viewed as an anionic digermyne fluoride adduct that is π-bonded to two Ag^{+} ions. ${ }^{16}$ Its formation and possible resonance structures of the $\mathrm{Ar}^{\prime} \mathrm{GeGe}(\mathrm{F}) \mathrm{Ar}^{\prime}$ monoanion are shown in Scheme 2.

Scheme 2

In summary, it has been shown that digermyne $\mathrm{Ar}^{\prime} \mathrm{GeGeAr}^{\prime}(\mathbf{1})$ reacts with Ag^{+}at low temperature to form the side-on complex 2. Its geometry, the $\mathrm{Ge}-\mathrm{Ge}$ bond lengthening, and calculated electron densities indicate that the digermyne $\mathbf{1}$ is acting as a π electron donor. The exploration of its chemistry is in hand.

Acknowledgment. We thank the National Science Foundation (CHE-0948417) for support of this research.

Supporting Information Available: CIF for $\mathbf{2}$ and $\mathbf{4}$, experimental data, and DFT calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Sekiguchi, A.; Kingo, R.; Ichinohe, M. Science 2004, 305, 1755. (b) Stender, M.; Philips, A. D.; Wright, R. J.; Power, P. P. Angew. Chem., Int. Ed. 2002, 41, 1785. (c) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 5930. (d) Pu, L.; Twamley, B.; Power, P. P. J. Am. Chem. Soc. 2000, 122, 3524.
(2) Jung, Y.; Brynda, M.; Power, P. P.; Head-Gordon, M. J. Am. Chem. Soc. 2006, $128,7185$.
(3) (a) Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2008, 130, 16848. (b) Cui, C.; Olmstead, M. M.; Fettinger, J. C.; Spikes, G. H.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 17530. (c) Spikes, G. H.; Power, P. P. Chem. Commun. 2007, 85. (d) Peng, Y.; Wang, X.; Fettinger, J. C.; Power, P. P. Chem. Commun. 2010, 46, 943.
(4) Reisinger, A.; Trapp, N.; Krossing, I.; Altmannshofer, S.; Herz, V.; Presnitz, M.; Scherer, W. Angew. Chem., Int. Ed. 2007, 46, 8295.
(5) For complexes of alkene analogues of Si or Ge with transition metals, see: (a) Berry, D. H.; Chey, J. H.; Zipin, H. S.; Carroll, P. J. J. Am. Chem. Soc. 1990, 112, 452. (b) Kira, M.; Sekiguchi, Y.; Iwamoto, T.; Kabuto, C. J. Am. Chem. Soc. 2004, 126, 12778. (c) Bravo-Zhivotovskii, D.; Peleg-Vasserman, H.; Kosa, M.; Molev, G.; Botoshanskii, M.; Apeloig, Y. Angew. Chem., Int. Ed. 2004, 43, 745. (d) Fischer, R.; Zirngast, M.; Flock, M.; Baumgarther, J.; Marschner, C. J. Am. Chem. Soc. 2005, 127, 70. (e) Zirngast, M.; Flock, M.; Baumgarther, J.; Marschner, C. J. Am. Chem. Soc. 2009, 131, 15952.
(6) (a) Weinert, C. S.; Fanwick, P. E. Acta Crystallogr. 2002, E58, 718. (b) Rasika Dias, H. V.; Wang, Z. Inorg. Chem. 2000, 39, 3890.
(7) Krossing, I. Chem.-Eur. J. 2001, 7, 490.
(8) Sugiyama, Y.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.; Nagase, S.; Tokitoh, N. J. Am. Chem. Soc. 2006, 128, 1023.
(9) Peng, Y.; Fischer, R. C.; Merrill, W. A.; Fischer, J.; Pu, L.; Ellis, B. D.; Fettinger, J. C.; Hevler, R. H.; Power, P. P. Chem. Sci. 2010, in press.
(10) Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 11626.
(11) Shannon, R. D.; Prewitt, C. T. Acta Crystallogr., Sect. B: Struct. Sci. 1969, B25, 925.
(12) DFT calculations were performed at the level of B3LYP/3-21G* with the Gaussian 03 package (for citation and calculation details see Supporting Information).
(13) Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper and Row: New York, 1983; Appendix E.
(14) Ding, Y.; Hao, H.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H. Organometallics. 2001, 20, 4806.
(15) (a) Mackay, K. M. The Chemistry of Organic Germanium, Tin, and Lead Compounds; Patai, S., Ed.; Wiley: Chichester, 1995; Chapter 2. (b) Baines, K. M.; Stibbs, W. G. Adv. Organomet. Chem. 1996, 39, 275.
(16) For the formation of disilene fluoride adducts, see: Zirngast, M.; Flock, M.; Baumgartner, J.; Marschner, C. J. Am. Chem. Soc. 2008, 130, 17460.

JA1051236

